A Categorification for the Signed Chromatic Polynomial

نویسندگان

چکیده

By coloring a signed graph by colors, one obtains the chromatic polynomial of graph. For each we construct graded cohomology groups whose Euler characteristic yields We show that satisfy long exact sequence which categorifies deletion-contraction rule. This work is motivated Helme-Guizon and Rong's construction categorification for unsigned graphs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Chromatic Polynomial of Fatgraphs and Its Categorification

Motivated by Khovanov homology and relations between the Jones polynomial and graph polynomials, we construct a homology theory for embedded graphs from which the chromatic polynomial can be recovered as the Euler characteristic. For plane graphs, we show that our chromatic homology can be recovered from the Khovanov homology of an associated link. We apply this connection with Khovanov homolog...

متن کامل

Categorification of the Dichromatic Polynomial for Graphs

For each graph and each positive integer n, we define a chain complex whose graded Euler characteristic is equal to an appropriate nspecialization of the dichromatic polynomial. This also gives a categorification of n-specializations of the Tutte polynomial of graphs. Also, for each graph and integer n ≤ 2, we define the different one variable n-specializations of the dichromatic polynomials, a...

متن کامل

A categorification of the Jones polynomial

2 Preliminaries 5 2.1 The ring R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 The algebra A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.3 Algebra A and (1+1)-dimensional cobordisms . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.4 Kauffman bracket . . . . . . . . . . . . . . . . . . . ...

متن کامل

The Chromatic Number of a Signed Graph

In 1982, Zaslavsky introduced the concept of a proper vertex colouring of a signed graph G as a mapping φ : V (G) → Z such that for any two adjacent vertices u and v the colour φ(u) is different from the colour σ(uv)φ(v), where is σ(uv) is the sign of the edge uv. The substantial part of Zaslavsky’s research concentrated on polynomial invariants related to signed graph colourings rather than on...

متن کامل

On Khovanov’s Categorification of the Jones Polynomial

The working mathematician fears complicated words but loves pictures and diagrams. We thus give a no-fancy-anything picture rich glimpse into Khovanov’s novel construction of “the categorification of the Jones polynomial”. For the same low cost we also provide some computations, including one that shows that Khovanov’s invariant is strictly stronger than the Jones polynomial and including a tab...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronic Journal of Combinatorics

سال: 2022

ISSN: ['1077-8926', '1097-1440']

DOI: https://doi.org/10.37236/10939